Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Sci Rep ; 11(1): 12756, 2021 06 17.
Article in English | MEDLINE | ID: covidwho-1275952

ABSTRACT

Higher transmissibility of SARS-CoV-2 in cold and dry weather conditions has been hypothesized since the onset of the COVID-19 pandemic but the level of epidemiological evidence remains low. During the first wave of the pandemic, Spain, Italy, France, Portugal, Canada and USA presented an early spread, a heavy COVID-19 burden, and low initial public health response until lockdowns. In a context when testing was limited, we calculated the basic reproduction number (R0) in 63 regions from the growth in regional death counts. After adjusting for population density, early spread of the epidemic, and age structure, temperature and humidity were negatively associated with SARS-CoV-2 transmissibility. A reduction of mean absolute humidity by 1 g/m3 was associated with a 0.15-unit increase of R0. Below 10 °C, a temperature reduction of 1 °C was associated with a 0.16-unit increase of R0. Our results confirm a dependency of SARS-CoV-2 transmissibility to weather conditions in the absence of control measures during the first wave. The transition from summer to winter, corresponding to drop in temperature associated with an overall decrease in absolute humidity, likely contributed to the intensification of the second wave in north-west hemisphere countries. Non-pharmaceutical interventions must be adjusted to account for increased transmissibility in winter conditions.


Subject(s)
Basic Reproduction Number , COVID-19/prevention & control , COVID-19/transmission , Cold Temperature , Humidity , Pandemics/prevention & control , SARS-CoV-2 , Seasons , COVID-19/epidemiology , COVID-19/virology , Canada/epidemiology , France/epidemiology , Humans , Italy/epidemiology , Portugal/epidemiology , Public Health , Quarantine/methods , Spain/epidemiology , United States/epidemiology
2.
Lancet Public Health ; 6(4): e222-e231, 2021 04.
Article in English | MEDLINE | ID: covidwho-1199201

ABSTRACT

BACKGROUND: The objective of this study was to better understand the factors associated with the heterogeneity of in-hospital COVID-19 morbidity and mortality across France, one of the countries most affected by COVID-19 in the early months of the pandemic. METHODS: This geo-epidemiological analysis was based on data publicly available on government and administration websites for the 96 administrative departments of metropolitan France between March 19 and May 11, 2020, including Public Health France, the Regional Health Agencies, the French national statistics institute, and the Ministry of Health. Using hierarchical ascendant classification on principal component analysis of multidimensional variables, and multivariate analyses with generalised additive models, we assessed the associations between several factors (spatiotemporal spread of the epidemic between Feb 7 and March 17, 2020, the national lockdown, demographic population structure, baseline intensive care capacities, baseline population health and health-care services, new chloroquine and hydroxychloroquine dispensations, economic indicators, degree of urbanisation, and climate profile) and in-hospital COVID-19 incidence, mortality, and case fatality rates. Incidence rate was defined as the cumulative number of in-hospital COVID-19 cases per 100 000 inhabitants, mortality rate as the cumulative number of in-hospital COVID-19 deaths per 100 000, and case fatality rate as the cumulative number of in-hospital COVID-19 deaths per cumulative number of in-hospital COVID-19 cases. FINDINGS: From March 19 to May 11, 2020, hospitals in metropolitan France notified a total of 100 988 COVID-19 cases, including 16 597 people who were admitted to intensive care and 17 062 deaths. There was an overall cumulative in-hospital incidence rate of 155·6 cases per 100 000 inhabitants (range 19·4-489·5), in-hospital mortality rate of 26·3 deaths per 100 000 (1·1-119·2), and in-hospital case fatality rate of 16·9% (4·8-26·2). We found clear spatial heterogeneity of in-hospital COVID-19 incidence and mortality rates, following the spread of the epidemic. After multivariate adjustment, the delay between the first COVID-19-associated death and the onset of the national lockdown was positively associated with in-hospital incidence (adjusted standardised incidence ratio 1·02, 95% CI 1·01-1·04), mortality (adjusted standardised mortality ratio 1·04, 1·02-1·06), and case fatality rates (adjusted standardised fatality ratio 1·01, 1·01-1·02). Mortality and case fatality rates were higher in departments with older populations (adjusted standardised ratio for populations with a high proportion older than aged >85 years 2·17 [95% CI 1·20-3·90] for mortality and 1·43 [1·08-1·88] for case fatality rate). Mortality rate was also associated with incidence rate (1·0004, 1·0002-1·001), but mortality and case fatality rates did not appear to be associated with baseline intensive care capacities. We found no association between climate and in-hospital COVID-19 incidence, or between economic indicators and in-hospital COVID-19 incidence or mortality rates. INTERPRETATION: This ecological study highlights the impact of the epidemic spread, national lockdown, and reactive adaptation of intensive care capacities on the spatial distribution of COVID-19 morbidity and mortality. It provides information for future geo-epidemiological analyses and has implications for preparedness and response policies to current and future epidemic waves in France and elsewhere. FUNDING: None.


Subject(s)
COVID-19/epidemiology , Adult , Aged , Aged, 80 and over , COVID-19/mortality , Epidemiologic Studies , Female , France/epidemiology , Geography, Medical , Hospital Mortality/trends , Humans , Incidence , Male , Middle Aged , Risk Factors , Spatial Analysis
SELECTION OF CITATIONS
SEARCH DETAIL